1.        Liang G#, Gao H, Bushman FD#. The pediatric virome in health and disease. Cell Host Microbe. 2022;30(5):639-649. doi:10.1016/j.chom.2022.04.006 [pdf]

2.        Liang G#, Bushman FD#. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514-527. doi:10.1038/s41579-021-00536-5 [pdf]

3.        Liang G#, Cobián-Güemes AG, Albenberg L, Bushman F#. The gut virome in inflammatory bowel diseases. Curr Opin Virol. 2021;51:190-198. doi:10.1016/j.coviro.2021.10.005 [pdf]

4.        Merenstein C§, Liang G§, Whiteside SA, et al. Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. MBio. 2021;12(4). doi:10.1128/mBio.01777-21 [pdf]

5.        Bushman F#, Liang G#. Assembly of the virome in newborn human infants. Curr Opin Virol. 2021;48:17-22. doi:10.1016/j.coviro.2021.03.004 [pdf]

6.        Nandi S§, Liang G§, Sindhava V, et al. YY1 control of mitochondrial-related genes does not account for regulation of immunoglobulin class switch recombination in mice. Eur J Immunol. 2020;50(6):822-838. doi:10.1002/eji.201948385 [pdf]

7.        Liang G, Zhao C, Zhang H, et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature. 2020;581(7809):470-474. doi:10.1038/s41586-020-2192-1 [pdf]

8.        Liang G, Conrad MA, Kelsen JR, et al. Dynamics of the stool virome in very early- onset inflammatory bowel disease. J Crohn’s Colitis. 2020;14(11):1600-1610. doi:10.1093/ecco-jcc/jjaa094 [pdf]

9.        Malmuthuge N§, Liang G§, Guan LL. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes. Genome Biol. 2019;20(1). doi:10.1186/s13059-019-1786-0 [pdf]

10.      Aggarwala V§, Liang G§, Bushman FD. Viral communities of the human gut: Metagenomic analysis of composition and dynamics. Mob DNA. 2017;8(1). doi:10.1186/s13100-017-0095-y [pdf]

11.      Liang G, Malmuthuge N, Bao H, Stothard P, Griebel PJ, Guan LL. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves. BMC Genomics. 2016;17(1). doi:10.1186/s12864-016-2957-y [pdf]

12.      Wang D§, Liang G§, Wang B, Sun H, Liu J, Guan LL. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: Insights on low-quality forage utilization. Sci Rep. 2016;6. doi:10.1038/srep21194 [pdf]

13.      Liang G, Malmuthuge N, Guan Y, Ren Y, Griebel PJ, Guan LL. Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci Rep. 2016;6. doi:10.1038/srep24964 [pdf]

14.      Guan Y§, Liang G§, Hawken PAR, et al. Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci Rep. 2015;5. doi:10.1038/srep10372 [pdf]

15.      Liang G, Malmuthuge N, Guan LL, Griebel P. Model systems to analyze the role of miRNAs and commensal microflora in bovine mucosal immune system development. Mol Immunol. 2015;66(1):57-67. doi:10.1016/j.molimm.2014.10.014 [pdf]

16.      Liang G, Malmuthuge N, McFadden TB, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life. PLoS One. 2014;9(3). doi:10.1371/journal.pone.0092592 [pdf]

Publications